Friday 17 February 2017

Week 3


This is the third lab week for the year 2 project and our progress is quite slow. This week we were mainly focused on the calculations. All members of the group where trying to understand the complex algorithms that needed to be implemented into the code which was easier said than done, as it seemed each equation led to another unknown!

 A complete calculation was finally achieved by Dominyka! Her entire working is shown below. This demonstrates how complex the algorithm is as all of this working merely shows the position at one specific time on a certain date. 


Calculating the position of the Moon for 05/03/2017 at 11:32. (first quarter) [1]

1)      Conversion of time and date to Julian days

Julian day = 864000s
Julian year = 365.25d
Julian century = 36525d

JD=365.25*year’+30.6001*(month’+1)-15+1720996.5+day+(hour+minute/60+second/3600)/24
If month<=2, then month’=month+1, year’=year-1,
if month>2, then month’=month, year’=year.
Number of Julien centuries: T=(JD-JD0)/36525

JD0 is the Julian day for 01/01/2000 at 12:00UT
JD0=365.25*1999+30.6001*14-15+1720996.5+1+12/24=2451546.151
JD is the Julian day for 05/03/2017 at 11:32UT
JD=365.25*2017+30.60001*4-15+1720996.5+5+(11+32/60)/24=2457818.631
T=6272.479596/36525=0.171731132

2)      Astronomical algorithms
·         Ecliptic latitude B and longitude L of the Moon [2]
B=-5.171º
L=75.062º

·         Convert B and L to right ascension RA and declination delta
eps=23+26/60+21.448/3600-(46.8150*T+0.00059*T2-0.001813*T3)/3600
X=cosB*cosL
Y=cos(eps)*cosB*sinL-sin(eps)*sinB
Z=sin(eps)*cosB*sinL+cos(eps)*sinB
R=
delta=180/π*arctg(Z/R)                                                                //π=180º
RA=180/π*arctg(sinL*cos(eps)-(tgB*sin(eps))/cosL)

eps=23+26/60+21.448/3600-(46.8150*0.171731132+0.1717311322*0.00059-0.001813*0.1717311323)/3600=23.43705789º≈23.437º
X=cos(-5.171º)*cos(75.062º)=0.2567
Y=cos(23.437º)*cos(-5.171º)*sin(75.062º)-sin(23.437º)*sin(-5.171º)=0.9187
Z=sin(23.437º)*cos(-5.171º)*sin(75.062º)-sin(23.437º)*sin(-5.171º)=0.3
R=0.953926
delta=1*arctg(0.3/0.953926)=17.4578º
RA=arctg(sin(75.062º)*cos(23.437º)-
(tg(-5.171º)*sin(23.437º))/cos(75.062º))=45.73877694º≈45.74º


·         Sidereal time at Greenwich [3]
theta0=280.46061837+360.98564736629*(JD-JD0)
Local time: theta=theta0+longitude(E+,W-)
Hour angle: tau=theta-RA

theta0=280.46061837+360.98564736629*6272.479596=2264555.568
2264555.568/360=6290.432134
6290.432134-6290=0.4321338119
theta0=0.4321338119*360=155.5681723º
theta=155.5681723º-2.963827º=152.6043453º
tau=152.6043453º-45.74º=406.8643453º
  
3)      Final results
·         Convert tau and delta to horizon coordinates h(altitude) and az(azimuth) of the observer (53.406773º, -2.965723º)
sinh=sin(beta)*sin(delta)+cos(beta)*cos(delta)*cos(tau) //beta-latitude
tg(az)=-sin(tau)/(cos(beta)*tg(delta)-sin(beta)*cos(tau))

h=sin-1(sin(53.406773º)*sin(17.4578º)+
cos(53.406773º)*cos(17.4578º)*cos(106.8643453º))=4.353º
az=arctg(-sin(106.8643453º)/(cos(53.406773º)*tg(17.4578º)-sin(53.406773º)*cos(106.8643453º)))=66.285º

·         Compute the parallax in altitude
horParal=r/a (rad)                                    //r-radius of the Earth(6378km)
                                                                  //a-distance to the Moon(384400km)
Converting to degrees: horParal=horParal*57.2957795
altParal=sin-1(cosh*sin(horParal))
Apparent altitude: H=h-altParal

horParal=0.0165921rad=0.9506568201º
altParal= sin-1(cos(4.353º)*sin(0.9506568201º))=0.9479142571º
H=4.353º-0.9479142571º=3.41º


Notes for week 4:
  •  Finish implementing the code and begin testing. 
  • Design the poster and discuss what should be included. 



[3] - http://www2.arnes.si/~gljsentvid10/sidereal.htm

No comments:

Post a Comment